© 2024
NPR for Northern Colorado
Play Live Radio
Next Up:
0:00
0:00
0:00 0:00
Available On Air Stations

A Remnant From Algae In Malaria Parasite May Prove Its Weakness

An <em>Anopheles albimanus</em> mosquito, which is an important vector for malaria transmission in Central America.
James Gathany
/
CDC
An Anopheles albimanus mosquito, which is an important vector for malaria transmission in Central America.

Scientists may have found a critical weakness in Plasmodium falciparum, the parasite that causes malaria. Researchers say the discovery provides a promising target for new malaria therapies.

The weakness is related to a structure inside malaria cells called an apicoplast. About a decade ago, molecular biologist Joseph DeRisi of the University of California, San Francisco became interested in an organelle inside the malaria parasites' cells known as an apicoplast. No one was completely sure what the apicoplast did.

Enter Ellen Yeh. She's a recent graduate of Stanford with an M.D. and a Ph.D. who came to work in DeRisi's lab.

Yeh is interested in metabolic pathways. These are the biochemical steps things like apicoplasts use to make the chemicals they make. Actually, Yeh is more than just interested in metabolic pathways. "I love metabolic pathways," she says.

Yeh started looking at the metabolic pathways in the parasite's apicoplasts. "There actually only seemed to be one pathway that the parasite really really needed. And that everything else it probably could find other ways of getting those products."

To prove it, she created a colony of parasites that were missing their apicoplasts. Normally, without an apicoplast, the parasites would just die. But Yeh added back the chemical from the important metabolic pathway to the tubes the parasites were growing in. "It was a pretty amazing day in the lab when I walked in and those parasites were still alive with no apicoplasts, but because I had added that one chemical they were still living," she says. The work appears in the journal Plos Biology.

Yeh's colleague DeRisi says knowing this is a critical chemical for the parasite is a game-changer. "Now we can design, or look for specific kinds of drugs that inhibit just this one thing instead of just shooting in the dark hoping that you find a drug that disrupts something that you hope might be essential," he says.

In fact, DeRisi already has a good place to start: fosmidomycin, a new drug that targets the apicoplast. But Boris Striepen, a malaria researcher at the University of Georgia, says fosmidomycin is not a great drug, because it's excreted from the human body too fast. He says the new findings should make the search for better drugs much easier.

Even so, Striepen says the malaria parasite isn't going to go down without a fight. "There is not one discovery that can be made and then that problem goes away and can be put to rest. I think it needs effort of new drugs to stay abreast."

Now, apicoplasts are odd. They don't show up in most species, and we don't have them in our cells. They have their own DNA, separate from the parasite's main DNA.

When scientists analyzed the apicoplasts DNA, they were astonished to find that it was most closely related to the DNA in algae. "It's actually thought that the malaria parasite incorporated an algal cell early on, and that the thing we call the apicoplast is the remnant of the algal cell," says Sean Prigge at the Johns Hopkins Malaria Institute .

So a remnant of algae may help bring down one of the world's most deadly parasites.

Copyright 2020 NPR. To see more, visit https://www.npr.org.

Joe Palca is a science correspondent for NPR. Since joining NPR in 1992, Palca has covered a range of science topics — everything from biomedical research to astronomy. He is currently focused on the eponymous series, "Joe's Big Idea." Stories in the series explore the minds and motivations of scientists and inventors. Palca is also the founder of NPR Scicommers – A science communication collective.